Code No: C2001

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I - Semester Examinations, April/May -2012 COMPUTER ORIENTED NUMERICAL METHODS (STRUCTURAL ENGINEERING)

Time: 3hours

Max. Marks: 60

Answer any five questions All questions carry equal marks

- 1. Solve the following system by Gauss- Jacobi and Gauss Seidel method: $10 \times -5y - 2z = 3;$ $4 \times -10y + 3z = -3;$ x + 6y + 10z = -3.
- 2.a) Apply Gauss-Jordan method to find the solution of the following system: 10 x + y + z = 12; 2 x + 10 y + z = 13;x + y + 5 z = 7.
- b) Reduce the matrix to the tridiagonal form by Householder's method

11	3	4
3	1	2
4	1	2

3. Fit the quadratic splines with M(0)=f''(0)=0. Hence find an estimate of f(2.5) data as given below.

x	0	1	2	3
f(x)	1	2	33	244

- 4. Solve the following by means of Euler method y' = x + y, y(0) = 1.0. Find y(0.1), y(0.5).
- 5. The following <u>table of values are given for a function f(x,y)</u>

y/x	0.1	0.2	0.3		
0.1	2.0200	2.0351	2.0403		
0.2	2.0351	2.0801	2.1153		
0.3	2.0403	2.1153	2.1803		

- a) Estimate the values of $\delta f/\delta x$ at (0.2, 0.1) and $\delta f/\delta y$ at (0.2, 0.2) by first order and second order formulas.
- b) Estimate the values of $(\delta^2 f / \delta x \, \delta y)$ at (0.2, 0.2) using second order formula.
- 6.a) Explain Richardson's extrapolation method.
- b) What is beam deflection? Explain.
- 7.a) Describe how the definition of double integral can be used to find approximations of double integrals over coordinate rectangles.
 - b) Explain how Simpson's Rule solves double integrals.
- 8. Find out the undetermined coefficients a, b and c such that the formula is exact for polynomials as higher order as possible and determine the order of truncation error

 $\int_0^h f(x) dx = h \left\{ a f(0) + b f\left(\frac{h}{3}\right) + c f(h) \right\}$